6. Chain lengths agreeing with experimental values may be predicted from the values of k_2 .

PRINCETON, NEW JERSEY

Received August 9, 1932 Published February 9, 1933

[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF HARVARD UNIVERSITY]

The Photochemical Reaction between Quinine and Dichromic Acid. II. Kinetics of the Reaction

By George S. Forbes, Lawrence J. Heidt and F. Parkhurst Brackett, Jr.

This paper suggests a kinetic picture consistent with new data and with data already published.¹ The experimental methods have been described¹ except those followed (by the last-named author) at 208, and 254 m μ .

The only primary act (except possibly at 208 m μ) contributing to reduction of dichromic acid disclosed by our results is an activation of the quinine molecule or ion, Q to form Q^{*}. In the secondary act a part of these activated molecules reduces dichromic acid. This picture could be amplified as follows. At the instant of excitation Q may be adjacent to molecules (or ions) of the other reactants, all within possibly effective ranges of distances and of orientations. That is, $n_1[Q] + n_2[H_2Cr_2O_7] +$ $n_3[H^+] \implies$ potentially effective kinetic "clusters," to borrow Weigert's general designation.² Such clusters are conditioned by kinetic and electrostatic effects, and are in no sense stable complexes like uranyl oxalate. Photochemical reactivity, while varying with configuration, is practically independent of all activation energies except that of Q^{*}. In a steady state and in a thin layer,

$$K_1\phi_q = [Q^*]_{\text{cluster}} / [Q^*]_{\text{total}} = K_2[Q^*]^{n_1} [H_2 Cr_2 O_7]^{n_2} [H^+]^{n_3} / [Q^*]$$

or

 $\log \phi_{q} + \log K_{1}/K_{2} = (n_{1} - 1) \log [Q^{*}] + n_{2} \log [H_{2}Cr_{2}O_{7}] + n_{3} \log [H^{+}]$

where ϕ_q is net quantum yield referred to light absorbed by quinine and $[Q^*] = K'[Q]$ where K' depends, among other factors, upon the reaction cell used. K_1 is itself complex, involving factors such as $K_3 e^{-\theta d/\theta_0 d_0}$ where θ_0 and d_0 indicate orientation and distance optimal for the secondary act.

If $[H_2Cr_2O_7]$ and $[H^+]$ are large compared with [Q], or are held constant, $\log \phi_q = (n_1 - 1) \log [Q] + \text{const.}$ For correct evaluation of n_1 , deviations from the reciprocity law had to be avoided by stopping down the front lens of the monochromator in each experiment to such an extent that the quinine in the first centimeter of the reaction mixture absorbed just as many quanta per minute, E_q , as in any other experiment in the series. As a consequence, $[Q^*]_{av}$, was always the same in the layer thus

⁽¹⁾ Forbes, Heidt and Boissonnas, THIS JOURNAL, 54, 960 (1932).

⁽²⁾ Weigert, Z. physik. Chem., 102, 416 (1922); 106, 426 (1923).

Feb., 1933

defined, also in other layers uniformly defined. Table I gives the data for one typical series of experiments. E_0 equals quanta per minute incident upon the cell.

IABLE I					
	λ, 366 mμ.	Temperature, 5°			
[H2SO4]	[Q]	E_{0}	$E_{\mathbf{q}}$	φq	
0.8	0.000250	$6.4 imes10^{16}$	$4.9 imes10^{16}$	0.057	
.8	.000025	$19.2 imes10^{16}$	$4.5 imes10^{16}$.059	
.8	.000010	$47.0 imes10^{16}$	$4.8 imes10^{16}$.057	
	[H1SO4] 0.8 .8 .8	λ, 366 mμ. [H ₃ SO ₄] [Q] 0.8 0.000250 .8 .000025 .8 .000010	λ , 366 mµ. Temperature, 5° [H ₃ SO ₄] [Q] E_0 0.8 0.000250 6.4×10^{16} .8 .000025 19.2 $\times 10^{16}$.8 .000010 47.0×10^{16}	λ , 366 mµ. Temperature, 5° [µ] E_0 E_q 0.8 0.000250 6.4×10^{16} 4.9×10^{16} .8 .000025 19.2×10^{16} 4.5×10^{16} .8 .000010 47.0×10^{16} 4.8×10^{16}	

Table I proves that ϕ_q when properly determined is independent of [Q]. Therefore $(n_1-1) = 0$ and $n_1 = 1$; that is, only one molecule of Q is involved in the secondary act. Similar data plotted at 405 and 313 m μ previously given,¹ and in Fig. 1 obtained at 366, 280, 254 and 208 m μ , lead to identical conclusions.

At 254 and 208 m μ a zinc spark consuming 3 k. w. and automatically kept constant over long periods was used as a source of light.⁸ Details of (3) Forbes and Brackett, THIS JOURNAL, **53**, 3973 (1931).

the crystal quartz monochromator working at f2 and its operation will be somewhat amplified elsewhere. Quantum yields and absorption coefficients were measured in a rectangular quartz cell (all seams fused) 85 mm. high, 35 mm. wide and 5.7 mm. thick, placed between the exit slit and the thermopile by which the highly divergent beam was integrated. The method, precautions and corrections followed closely previous investigations in this Laboratory.⁴ At these wave lengths all experimental difficulties were increased, also the radiometric corrections, made as previously described. ϕ_q is given after correction for direct photolysis of dichromic acid absorbing E_c quanta per minute. The need for such a correction appears in Table II.

	TABLE .	II	
λ	Temperature, 25°. [K2Cr2O7]	$E_{ m e},5 imes10^{16}\ [m H_2SO_4]$	φ
208 mµ	0.00016	0.8	0.012
208	. 00032	.8	.013
254	.00016	.8	.004
254	.00036	.8	.005
280	. 003	.8	. 000

In Fig. 1 at $254 \text{ m}\mu$ the curve appears nearly horizontal, as was the case at 280, 313, 366 and $405 \text{ m}\mu$. At 208 m μ , however, the points B', A' and B", as [Q] approaches zero, suggest that the curve may be turning upward as dichromic acid absorbs a greater share of the light. Points A and A', which average a preliminary set of experiments, should be given less weight than the others. Points B and B', on the other hand, each average three very concordant final experiments. It, therefore, appears possible that at 208 m μ we have two activated reactants, each one reacting to a measurable extent with the other in its normal state. Conclusive evidence upon this admittedly important point would require a further refinement of experimentation, hard indeed to attain. Clusters in which both reactants are simultaneously activated⁵ might well be exceedingly reactive, but an event of such a type ought to be so infrequent as to contribute negligibly to the total reaction.

The data graphed in curve 1, Fig. 1, at 366 m μ were collected to test Morton's prediction⁶ that the efficiency of dichromic acid as an oxidant of quinine should increase, with increase of [H₂SO₄] from zero to 0.37, to a maximum incapable of still further increase through light absorption. In the series, $E_{\rm q}$ was held constant as described above and no sulfuric acid was added, the quinine bisulfate and dichromic acid being so dilute no precipitate appeared. As in the other curves in the figure, $\phi_{\rm q}$ is unchanged even at minimal values of [Q] where the greater part of the

 ^{(4) (}a) Villars, THIS JOURNAL, 49, 362 (1927); (b) P. A. Leighton and G. S. Forbes, *ibid.*, 51, 3549 (1929); (c) W. G. Leighton and G. S. Forbes, *ibid.*, 52, 3139 (1930).

⁽⁵⁾ Compare paper of Forbes, Woodhouse and Dean, ibid., 45, 1891 (1923).

⁶⁾ Morton, J. Phys. Chem., 33, 1135 (1929).

light available is absorbed by dichromic acid. As ϕ_q does not even now increase when [Q] becomes very small, it is evident that at minimal acidity light has not measurably increased the reactivity of dichromic acid toward non-illuminated quinine.

Table III presents typical data for evaluation of n_2 .

TABLE III							
λ, 280 m μ . Temperature, 25°							
[Q]	[H2SO4]	$[K_2Cr_2O_7]$	E_0	$E_{\mathbf{q}}$	$oldsymbol{\phi}_{ ext{q}}$		
0.001	0.8	0.00016	$2.17 imes10^{16}$	$1.26 imes10^{16}$	0.094		
.001	.8	.00008	$1.71 imes10^{16}$	$1.30 imes10^{16}$.069		
.001	.8	.00004	$1.50 imes10^{16}$	$1.30 imes10^{16}$. 048		

Similar series completed at 405, 366 and 280 m μ are shown in Fig. 2, where log ϕ_q is plotted against log [K₂Cr₂O₇] at various wave lengths and temperatures. The black dots are based upon Table VIII of Luther and

Fig. 2.— \odot , Temp. 23°; - \bigcirc , Temp. 5°; •, Data of L. & F., Ref. 7; [H₂SO₄], 0.8; E_q , 5 × 10¹⁶.

Curve	λ in m μ	[Q]	Slope, n2
1	405	0.01	0.43
2	405	.004	. 43
3	313	.00025	.38
4	36 6	.00025	. 40
5	280	.001	.41
6	280	.001	.48
		Aver	age .42

Forbes,⁷ log of the relative reaction rates in polychromatic light, 405 and 366 m μ , being plotted as ordinates in place of log ϕ_q . It is noteworthy that straight lines result in all cases, log $\phi_q = n_2 \log[H_2Cr_2O_7] + \text{const.}; n_2$ is uniformly 0.43 \pm 0.05 irrespective of wave length or temperature, which assigns only half the molecule $H_2Cr_2O_7$ to an effective cluster. Possibly chromic acid reacts more readily with Q* than dichromic acid. Since $[H_2CrO_4] = k[H_2Cr_2O_7]^{1/2}$, a plot of log ϕ_q against log $[H_2Cr_2O_7]^{1/2}$ would have a slope equal to unity within the experimental error and would represent the behavior of clusters containing one molecule of chromic acid. The residue of the chromate molecule, bereft of one oxygen atom, is unstable and would be expected to react again, doubling the immediate quantum yield.

The evaluation of n_3 , for hydrogen ion, was hampered by lack of data on activity coefficients in rather concentrated sulfuric acid. Specific conductivity, r^{-1} , is perhaps the next best measure of the activity of hydrogen ion in clusters. In Fig. 3 log ϕ_q is plotted against log[$(r_{H_1SO_4})^{-1}/-$

(7) Luther and Forbes, THIS JOURNAL, 31, 770 (1909).

 $(r_{\rm Hg})^{-1}$], taken from Kohlrausch's tables.⁸ The data of Forbes, Woodhouse and Dean⁵ appear as black dots, log of the relative reaction rates in polychromatic light being plotted as ordinates in place of ϕ_q . Straight lines again result, but the average slopes assign to n_3 the value 0.07 and to sulfuric acid a subordinate role in the reaction. Possibly the hydrogen ion already present in H₂Cr₂O₇ or H₂CrO₄ usually suffices for the secondary act involving Q^{*}, the additional hydrogen ion in the cluster increasing only slightly the probability of the same.

The data on the reciprocity law, before plotting,⁹ were subjected to a correction not discussed at that time, the need for which appears in Table IV.

TANE TV

			I ADL	EIV			
		λ, 366	mμ. Tei	mperature,	22°		
	[Q]	[K2Cr2O7]	[H2SO4]	$E_{ m q} imes 10^{-16}$	Minutes irradi- ated	Total min. before titration	φq, un- corrected
1	0.00025	0.00016	0.8	8	60	75	0.062
2	.00025	.00016	.8	8	60	1260	.077
3	. 00025	.00016	.8	8	120	135	.065

As solution (2) was exposed for the same time as (1), the difference in ϕ_q is attributable to a *dark* reaction between the photochemical oxidation products and dichromic acid during twenty-one hours as the values of ϕ_q in Table IV were corrected for the dark reaction not involving photochemical oxidation products of quinine. Experiments involving exposure to weak light over long periods are misleading until corrected for this dark reaction. Solution (3) was exposed twice as long as (1) and then titrated promptly. It is clear that the oxidation products formed during the first hour contributed little if anything to the photolysis during the second hour; that is, their quantum yield cannot greatly exceed ϕ_q . A fourth solution was photolyzed (λ , 366 m μ) until about half the quinine was oxidized. Absorption of 3×10^{20} quanta (λ , 436 m μ) by the dichromic acid in the solution followed without any effect, proving that the photochemical oxidation products, like quinine, are not photochemically oxidized in blue light.

The corrected decrease in ϕ_q with increase in light intensity,⁹ as well as the small size of ϕ_q itself, suggests the hypothesis that photochemically efficient clusters are formed at a relatively slow rate. An increased light intensity might be expected to eliminate such clusters more rapidly, and cut down their concentration which existed in the previous steady state. Thereafter, a smaller fraction of the total quanta absorbed would activate quinine already present in efficient clusters, causing ϕ_q to decrease. This effect was found most striking in solutions most concentrated in dichromic acid, as shown in Table V.

(9) Ref. 1, Figs. 4, 5.

⁽⁸⁾ Kohlrausch, "Physical Measurements," D. Appleton and Co., New York, 1874, p. 236

TABLE V						
	λ, 366 mμ.	Temperatu	ıre, 22°			
[Q]	[K ₂ Cr ₂ O ₇]	$[H_2SO_4]$	$E_{q} \times 10^{-16}$	φq		
0.00025	0.00016	0.8	18.0	0.058		
			1.8	.070		
.00025	.00008	.8	18.0	.048		
			1.8	.052		
.00025	.00004	.8	. 18.0	.039		
			1.8	.040		

In a previous paper¹ the relation between wave length and quantum yield was discussed. To make the data there more complete, we have since determined ϕ_q , 0.070 at 334 m μ , compared with a value of 0.060 at 366 and at 313 m μ , under conditions otherwise identical.

Using a Judd-Lewis sector spectrophotometer in a more detailed study of the variation of the extinction coefficient of quinine, K_q , with variation of [H₂SO₄] and wave length we found that from 405 to 208 m μ , log K_q is a linear function of either the log [H₂SO₄] or the log [Q], the other being held constant. A shift of 200 cm.⁻¹ of the absorption curve of [Q], 0.0001 mole per liter, toward smaller wave numbers was observed in passing from 0.004 to 4.0 m H₂SO₄. In the steeper parts of the absorption curve, accurate data regarding [H₂SO₄] are therefore indispensable.

Ten-degree temperature coefficients, $\delta_{10} \cdot \phi_q = (\phi_q)_{t+10}/(\phi_q)_t$, between 5 and 24° (one determination only at 29°) at various wave lengths appear in Table VI. Each entry gives the average of two or more complete experiments. Increments of $[K_2Cr_2O_7]$ seem to lower $\delta_{10} \cdot \phi_q$ slightly, but doubling $[H_2SO_4]$ does not seem to affect it measurably. The increase in $\delta_{10} \cdot \phi_q$ at shorter wave lengths is too small to warrant theoretical argument. Further, the average of $\delta_{10} \cdot \phi_q$, 1.12, approximately equals (273 $+ 20)^3/(273 + 10)^3$ which suggests an interesting possibility.

TABLE \	11
---------	----

λin mμ	[K2Cr2O7]	[Q]	[H2SO4]	ϕ_q at $5 \pm 1^\circ$	$\phi_{\mathbf{q}}$	temperature coefficient
366	0.00004	0.00025	0.8	0.029	0.039 at 22°	1.17
	.00004	.00025	.8	.044	.0 55 at 29°	1.10
	.00008	.00025	.8	.052	.054 at 23°	1.02
	.00016	.00025	.8	.06 2	.070 at 24°	1.07
	.00016	.00025	1.7	.060	.070 at 25°	1.08
313	.00016	.00025	0.8	.056	.064 at 24°	1.14
	.00016	.0010	.8	.052	.064 at 23°	1.16
	.00004	.00025	.8	.028	.033 at 24°	1.17
280	.00004	.001	.8	.038	.050 at 22°	1.17
	.00008	.001	.8	.054	.069 at 22°	1.16
	.00016	.001	.8	.070	.083 at 21°	1.12
404	.00016	.02	.8	.022	.028 at 22°	1.15
					Average	e 1.12

Feb., 1933

In a gaseous system the number of bimolecular collisions, Z, experienced by a particle having a mean free path l for a mean linear displacement \overline{X} is

$$Z = 3\pi \overline{X}^2 / 4l^2 \tag{1}$$

For a particle in a liquid system Einstein¹⁰ and von Smoluchowski¹¹ showed that in one second

$$\overline{X}^2 = \frac{kT}{3\pi\eta r} \tag{2}$$

where k is the gas constant per molecule, η the viscosity of the solvent, r the radius of the particle and T the absolute temperature. Granting that (1) can be made applicable to collision numbers involving ions in a liquid system by multiplying Z by a constant factor, we can substitute (2) in (1) and note that η for water between 0 and 30° is proportional to $1/T^2$, whereupon $Z = f(T^3)$. Over the temperature range 5 to 24°, $[(297)^3/(278)^3] \times 10/19 = 1.115$.

The above calculation would be also in accord with our tentative view that activated quinine reacts with dichromic (or chromic) acid in a bimolecular process requiring no additional energy of activation. It should be noted that this is not in harmony with the views held by Moelwyn-Hughes¹² and others, namely, that Z is directly proportional to the viscosity and hence has a negative temperature coefficient. If Moelwyn-Hughes' contentions are correct, a positive heat of activation, smaller than that of the average thermal reaction, would be indicated for the secondary act, and no obvious evidence of a bimolecular reaction would appear.

The investigation of quinine derivatives is being continued.

Summary

The photochemical reaction between quinine and dichromic acid apparently occurs in photochemically efficient clusters (not complexes) containing the above. Individual concentrations were varied; other variables, including concentration of activated quinine, were fixed. Seven wave lengths over the range 405 to 208 m μ were used. By graphical methods, reaction order was found to be zero for quinine and 0.43 for H₂Cr₂O₇ or 0.86 for H₂CrO₄. These values correspond to 0.50 and 1.00, respectively, within experimental error. A reaction order of 0.07 for H₂SO₄ assigns a subordinate role to this reactant. It is barely possible that at 208 m μ only, both the quinine and the dichromic acid are photosensitive.

It is shown that when the total absorbed light is divided between two (or more) constituents of the solution, the total intensity must be regulated so as to maintain the same concentration of the effectively activated constituent in all the experiments used to establish the effect of changing the concentration of some other reactant.

- (10) Einstein, Ann. Physik, [4] 17, 549 (1905); 19, 371 (1906).
- (11) Von Smoluchowski, ibid., 21, 756 (1906).

⁽¹²⁾ Moelwyn-Hughes, J. Chem. Soc., 95 (1932).

Quinine concentration being held constant, an increase in sulfuric acid concentration from 0.004 to 4 moles per liter shifts the whole absorption curve 200 cm.⁻¹ toward the red.

The ten-degree temperature coefficient, 1.12, agrees with one mode of calculating the temperature coefficient of the collision number in solution of a bimolecular reaction between activated quinine and H_2CrO_4 without additional energy of activation. Another calculation predicts a small energy of activation.

CAMBRIDGE, MASSACHUSETTS

Received August 12, 1932 Published February 9, 1933

[Contribution from the Research Laboratory of Inorganic Chemistry, Massachusetts Institute of Technology, No. 24]

Ammines of the Lower Chlorides of Titanium

BY WALTER C. SCHUMB AND RICHARD F. SUNDSTRÖM

Although anhydrous titanium dichloride and trichloride have been the subject of numerous investigations, conflicting statements relative to some of their properties, and the absence of data concerning others, make the further study of these compounds desirable. In particular, the recorded observations which concern the preparation of the two chlorides appear in some respects to be in need of revision, and comparatively little is known concerning the reactions of these two substances with ammonia. The aim of the present paper is to contribute further information on each of these subjects.

Ruff and Neumann¹ prepared the anhydrous trichloride by reducing the tetrachloride with various metals. They obtained it as violet crystals, which when heated in a vacuum slowly began to sublime at 425° , and to decompose at 450° into the di- and tetrachlorides. At 475° this decomposition proceeded rapidly, and the dichloride thus obtained was very stable to heat and not volatile in a vacuum even at 600° . It is interesting to note that they were unable to obtain samples of high purity; they accounted for their high titanium content and low chlorine content by assuming that their samples bad become oxidized during the course of the preparation. Earlier investigators similarly had failed to obtain pure specimens.

Meyer and co-workers² prepared the trichloride by the reduction of the tetrachloride with hydrogen at high temperatures, employing the hot-cold tube previously used by Georges and Stähler.³ At 800–1000° they obtained a mixture of the di- and trichlorides, which was converted completely into the trichloride by heating to 300° in a stream of hydrogen and

- (2) Meyer, Bauer and Schmidt, Ber., 56, 1908 (1923).
- (3) Georges and Stähler, ibid., 42, 3200 (1909).

596

⁽¹⁾ Ruff and Neumann, Z. anorg. allgem. Chem., 128, 81 (1923).